Explanation of MATLAB routines for matching Fe grain geochemistry to source dataset

We wish to match sample grains from a given data set to those in a data set called NEWARCSHF. A program called cmp2newArc will accomplish this task.

cmp2newArc.m
cmp2newArc.m first reads in the NEWARCSHF file. It assigns the following variables from that data set and saves them to be later used repeatedly by a function:

sample grain number

element data

source area

The element data variable contains the composition of 14 different elements for each sample grain number.

Next, the program reads in the file statReps2, which contains the acceptable ranges of deviation for the 14 different elements. Those data are then saved for repeated use by a function.

Then, the program reads in the input file, for example the ACEX file, which will be compared to the NEWARCSHF file. The following variables are then assigned and saved for future use:

sample grain number

mineral number (string)

mineral number (double)

element data

The element data variable contains the composition of 14 different elements for each sample grain number.

Finally, the function cmp2newArcFun.m is called, for each mineral number, in the form cmp2newArcFun(thisMin, thisRange).

cmp2newArcFun.m
The function cmp2newArcFun.m receives the mineral number and range as inputs.

The function loads the statReps2 data and assigns the appropriate ranges for element data, based on the range it received as an input. It also reads in a "cutoff value" for each element. This value will be used to exclude matches for which all of the elements are within the acceptable range, but for which the sum of the differences is too high.

Then, the function gets the data from the file being matched against NEWARCSHF: element data, mineral number (string and double), and sample grain number.

Next, the function finds the indices of row numbers where the mineral number being analyzed occurs. These indices are applied to find the appropriate sample grain numbers and element data for the input file.

A empty cell called "matches" is created. It has as many rows as the number of grains from the given mineral number times 3, and as many columns as the number of grains from the given mineral number. This is the exact number of rows that is needed, and the maximum number of columns that could be needed if a grain were to match to each of the other grains. Allocating this memory in advance makes the function run much faster.

Then, a "for loop" is created. It runs through one iteration for each grain of the input file. The sample grain numbers are put into the first column, starting with the first row and continuing every 3 rows after that. A label called "Difference" is created below each sample grain number, and a label called "SoArea" below that.

Within the "for loop" a new index is created. The index finds matches to the grain being tested. If each of the 14 elements for the grain fall within the acceptable range of the NEWARCSHF element data, the grain is a match. The range is determined by subtracting the statReps2 value from the NEWARCSHF value to determine a minimum value, and adding it to determine a maximum.

Next, for only the grains that matched, the absolute value of the difference between an input file element and the NEWARCSHF element is determined. This value is summed for all 14 elements to determine the sum of differences.

Then, a built-in Matlab function called "sort" is used to sort the sum of differences in ascending order. It also returns the indices of the matches from which those differences were found. Those indices are then used to also sort the source areas and sample grain numbers of matches, keeping the appropriate variables associated with each other for each matching grain.

Next, the cutoff values are applied, potentially removing some of the later columns of matches.

For each match, the sample grain number, sum of differences, and source areas are then placed into the appropriate cell in the "matches" variable.

Finally, a function called "cell2csv," which was obtained from the Mathworks file exchange, is used to write the matches file to a .csv. Each file will be for particular mineral number. Each time the function cmp2newArcFun is called, it will be for a different mineral number and will produce one output match file.

weightScript.m
weightScript.m sets up an empty cell called "weight." The first row of "weight" is filed with labels: sample grain number in the first column and source areas in subsequent columns.

Then, a function called weightFun is called for each mineral and range pair. Each time the function is called, the results are concatenated onto the end of the previous contents of the variable "weight."

After the function has been called for each mineral, the function cell2csv writes the variable "weight" to a .csv file.

wieghtFun.m
weightFun(mineral number, range) reads a matches file for a specified mineral number and range of deviation. Then, for each sample grain number, a "weight" (between 0 and 1) is assigned to each source area from which a match was found. A weight of 0 is assigned to source areas from which no matches were found. A weight of 1 is assigned to a source area from which all of the matches were found. It accomplishes this task as follows:

The function reads in a match file for a given mineral and range.

A "for loop" goes through each row of grains, one at a time. The inverse is found for each sum of differences in that row. Then the sum of the inverse of the sum of differences is calculated.

A nested "for loop" exists within the previous "for loop." This loop goes through each column, one at a time, for the row being analyzed. It calculates the weight for each source area by dividing its value of the inverse by the total sum for all source areas. But, in addition to that, source areas with multiple matches have more weight. For source areas with multiple matches, the initial weights are added together for each match from that source area.

The output of weightFun.m is a cell, which is returned to weightScript and concatenated before being written to a .csv file.
