Stable isotope and sr/ca profiles from the marine gastropod *Conus ermineus*:

Testing a multiproxy approach for inferring paleotemperature and paleosalinity

D. Keith Gentry,¹ Sindia Sosdian,² Ethan L. Grossman,¹* Yair Rosenthal,^{2,3} David

Hicks,⁴ and Caroline H. Lear⁵

¹Texas A&M University, Department of Geology and Geophysics, College Station, Texas 77843, USA; ²Rutgers University, Institute of Marine and Coastal Sciences, New Brunswick, New Jersey 08901, USA; ³Rutgers University, Department of Geological Sciences, New Brunswick, New Jersey 08901, USA; ⁴University of Texas, Brownsville, Department of Biological Sciences, Brownsville, Texas 78520, USA; ⁵Cardiff University, School of Earth, Ocean, and Planetary Sciences, Cardiff CF10 3YE, UK *e-mail: e-grossman@tamu.edu*

*Corresponding author. Keywords: oxygen isotope, carbon isotope, strontium, mollusk, paleoenvironment

ABSTRACT

This study tests the fidelity of shallow-water gastropod skeletons as multiproxy archives of paleoenvironmental change by comparing isotopic and trace-metal analyses of specimens of *Conus ermineus*. Four adult specimens were collected live from Stetson Bank in the northwestern Gulf of Mexico during the summer of 2003. Shells were sampled along axes of growth to produce time-series profiles spanning up to 8 years. δ^{18} O and Sr/Ca profiles show seasonal cyclicity modified by fast summer and slow winter shell growth. The profiles were combined to estimate paleosalinity. This yields variable results that overestimate salinity range; nevertheless, annual salinity minima and maxima are still evident. The overestimates are attributed to interspecimen Sr/Ca variability and error in the $\delta^{18}O_{sw}$ -salinity regression. Profiles of $\delta^{13}C$ show seasonal variation superimposed on a decreasing ontogenetic trend, the latter ascribed to decreasing metabolic efficiency also reflected by an ontogenetic increase in Sr/Ca. Seasonal δ^{13} C variation reflects changes in the δ^{13} C of dissolved inorganic carbon (δ^{13} C_{DIC}). Salinity and $\delta^{13}C_{\text{DIC}}$ at Stetson Bank strongly correlate (R² = 0.80, p < 0.0001), and shell $\delta^{13}C$ minima coincide with local salinity minima following times of peak river discharge. These δ^{13} C minima terminate during annual shelf current reversals. Low-salinity waters directly account for less than half the variability in shell δ^{13} C but enhance summer stratification and trap respired CO₂ from sediment pore waters. Specimens from this study show mean δ^{13} C values 1‰ lower than C. ermineus collected from Stetson Bank in 1971, reflecting the decrease in $\delta^{13}C_{DIC}$ from fossil fuel burning.